Predicting Boston Rides

Gartheeban Ganeshapillai
CSAIL MIT
• Predicting the number of pickups in a 2 hr window within 250m radius from a location.

• Given
 – Pickups (P)
 – Dropoffs (D)
 – Events (E)
 – Twitter (TW)
 – Weather (W)
Nearby Pickups (N)
Nearby Pickups (N)
Nearby Pickups (N)
• Additional series created
 – Nearby pickups within 1.4*250m radius (N1)
 – Nearby pickups within 2*250m radius (N2)
 – Dropoffs elsewhere (D2)
 – Dropoffs at other specific locations, for e.g., at Logan international (D_1 D_2 \ldots D_{36})
Additional series created
– Nearby pickups within 1.4*250m radius (N1)
– Nearby pickups within 2*250m radius (N2)
– Dropoffs elsewhere (D2)
– Dropoffs at other specific locations, for e.g., at Logan international (D1 D2 … D36)
Method
• $y = f(x)$

• **Output:** y
 – Number of pickups

• **Inputs:** x
 – Pickups (P)
 – Dropoffs (D)
 – Twitter (TW)
 – Weather (W)
 – Nearby pickups (N1, N2)
 – Other dropoffs (D_2, D_1, D_2, … D_{36})
• Cleaning, normalizing, centering data
• Centering
 – Day of the week, Hour of the day, and Month
• Extract time windows
• Torture the data until it speaks
Under-fitting
(too simple to explain the variance)

Appropriate-fitting

Over-fitting
(forcefitting -- too good to be true)
• Classical machine learning problems
 – Non-linear fit
 – Avoid over-fitting
• Bagged tree learner (random forest)
 – Builds a regression tree on a sample set, averages all the trees (hundreds) at the end
 – Powerful, non-linear, and avoids over-fitting.
• Time series - autocorrelation
• Another level of predictions on residuals ($\hat{y} - y$) in near-by hours
 – E.g., residuals the previous day and following day at the same hour, and residuals +/- 2 hour apart.
• 2 levels of corrections to handle autocorrelation on residuals.